STRINGSTRING
Dcp2 Dcp2 Dcp1a Dcp1a Xrn1 Xrn1 Edc3 Edc3 Edc4 Edc4 Patl1 Patl1 Ddx6 Ddx6 Dcp1b Dcp1b Cnot7 Cnot7 Lsm1 Lsm1 Ace Ace
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Dcp2m7GpppN-mRNA hydrolase; Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs. Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP. Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (By similarity). Plays a role in replication-dependent histone mRNA degradation (By similarity). Has higher activity towards mRNAs that lack a poly(A) tail. Has no activity towards a cap structure lacking an RNA moiety. (422 aa)    
Predicted Functional Partners:
Dcp1a
mRNA-decapping enzyme 1A; Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP. Contributes to the transactivation of target genes after stimulation by TGFB1 (By similarity).
   
 0.999
Xrn1
5'-3' exoribonuclease 1; Major 5'-3' exoribonuclease involved in mRNA decay. Required for the 5'-3'-processing of the G4 tetraplex-containing DNA and RNA substrates. The kinetic of hydrolysis is faster for G4 RNA tetraplex than for G4 DNA tetraplex and monomeric RNA tetraplex. Binds to RNA and DNA. Plays a role in replication-dependent histone mRNA degradation (By similarity).
   
 0.999
Edc3
Enhancer of mRNA-decapping protein 3; Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping (By similarity); Belongs to the EDC3 family.
  
 0.999
Edc4
Enhancer of mRNA-decapping protein 4; In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro).
   
 0.995
Patl1
Protein PAT1 homolog 1; RNA-binding protein involved in deadenylation-dependent decapping of mRNAs, leading to the degradation of mRNAs. Acts as a scaffold protein that connects deadenylation and decapping machinery. Required for cytoplasmic mRNA processing body (P-body) assembly (By similarity); Belongs to the PAT1 family.
   
 0.991
Ddx6
Probable ATP-dependent RNA helicase DDX6; In the process of mRNA degradation, plays a role in mRNA decapping (By similarity). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts ; Belongs to the DEAD box helicase family. DDX6/DHH1 subfamily.
   
 0.987
Dcp1b
mRNA-decapping enzyme 1B; May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7- methyl guanine cap structure from mRNA molecules, yielding a 5'- phosphorylated mRNA fragment and 7m-GDP (By similarity); Belongs to the DCP1 family.
   
 0.986
Cnot7
CCR4-NOT transcription complex subunit 7; Has 3'-5' poly(A) exoribonuclease activity for synthetic poly(A) RNA substrate. Its function seems to be partially redundant with that of CNOT8. Catalytic component of the CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation. During miRNA-mediated repression the complex seems also to act as translational repressor during translationa [...]
   
 
 0.980
Lsm1
U6 snRNA-associated Sm-like protein LSm1; Plays a role in the degradation of histone mRNAs, the only eukaryotic mRNAs that are not polyadenylated (By similarity). Probably also part of an LSm subunits-containing complex involved in the general process of mRNA degradation (By similarity). Belongs to the snRNP Sm proteins family.
    
 0.961
Ace
Angiotensin-converting enzyme, soluble form; Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI- anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. This GPIase activity seems to be crucial for the egg- binding ability of the sperm; Belongs to the peptidase M2 family.
      
 0.938
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (6%) [HD]