STRINGSTRING
ligA ligA leuS leuS topA topA poR poR uvrB uvrB ruvB ruvB DVU_0453 DVU_0453 polA polA DVU_0156 DVU_0156 DVU_1606 DVU_1606 hisS hisS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ligADNA ligase, NAD-dependent; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA. (799 aa)    
Predicted Functional Partners:
leuS
leucyl-tRNA synthetase; Identified by similarity to SP:P07813; match to protein family HMM PF00133; match to protein family HMM TIGR00396; Belongs to the class-I aminoacyl-tRNA synthetase family.
 
 
 0.865
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
  
 
 0.840
poR
Pyruvate-ferredoxin oxidoreductase; Identified by similarity to GP:1770208; match to protein family HMM PF00037; match to protein family HMM PF01558; match to protein family HMM PF01855.
   
   0.784
uvrB
Excinuclease ABC, B subunit; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
  
  
 0.781
ruvB
Holliday junction DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing.
  
  
 0.764
DVU_0453
ATP-dependent DNA helicase, UvrD/REP family; Identified by match to protein family HMM PF00580.
  
  
 0.736
polA
DNA polymerase I; Identified by similarity to SP:P00582; match to protein family HMM PF00476; match to protein family HMM PF01367; match to protein family HMM PF02739; match to protein family HMM TIGR00593.
 
  
 0.736
DVU_0156
ATP-dependent DNA helicase, UvrD/REP family; Identified by match to protein family HMM PF00580.
  
  
 0.706
DVU_1606
Potassium uptake protein, TrkA family; Identified by similarity to OMNI:NTL01SS00580; match to protein family HMM PF02080; match to protein family HMM PF02254.
  
  
 0.663
hisS
histidyl-tRNA synthetase; Identified by similarity to SP:P04804; match to protein family HMM PF00587; match to protein family HMM PF03129; match to protein family HMM TIGR00442.
 
  
 0.662
Your Current Organism:
Desulfovibrio vulgaris Hildenborough
NCBI taxonomy Id: 882
Other names: D. vulgaris str. Hildenborough, Desulfovibrio vulgaris (STRAIN HILDENBOROUGH), Desulfovibrio vulgaris ATCC 29579, Desulfovibrio vulgaris str. Hildenborough, Desulfovibrio vulgaris subsp. vulgaris (strain Hildenborough), Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough
Server load: low (20%) [HD]