STRINGSTRING
AGE26354.1 AGE26354.1 AGE26355.1 AGE26355.1 AGE26356.1 AGE26356.1 AGE26357.1 AGE26357.1 AGE26359.1 AGE26359.1 AGE26358.1 AGE26358.1 nuoC nuoC nuoI nuoI AGE27938.1 AGE27938.1 nuoB nuoB nuoH nuoH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AGE26354.1Monovalent cation/H+ antiporter subunit A; COG1009 NADH:ubiquinone oxidoreductase subunit 5 (chain L)/Multisubunit Na+/H+ antiporter, MnhA subunit. (973 aa)    
Predicted Functional Partners:
AGE26355.1
COG1006 Multisubunit Na+/H+ antiporter, MnhC subunit.
 
 
 0.999
AGE26356.1
COG0651 Formate hydrogenlyase subunit 3/Multisubunit Na+/H+ antiporter, MnhD subunit.
 
 
0.999
AGE26357.1
COG1863 Multisubunit Na+/H+ antiporter, MnhE subunit.
 
 
 0.999
AGE26359.1
COG1320 Multisubunit Na+/H+ antiporter, MnhG subunit.
 
 
 0.999
AGE26358.1
COG2212 Multisubunit Na+/H+ antiporter, MnhF subunit.
 
 
 0.998
nuoC
Bifunctional NADH:ubiquinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family.
  
 
 0.997
nuoI
NADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.994
AGE27938.1
COG1145 Ferredoxin.
  
 
 0.994
nuoB
NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
 
 0.975
nuoH
NADH:ubiquinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
 
 
 0.962
Your Current Organism:
Pseudomonas poae
NCBI taxonomy Id: 1282356
Other names: P. poae RE*1-1-14, Pseudomonas poae RE*1-1-14
Server load: low (24%) [HD]