STRINGSTRING
ileS ileS proS proS leuS leuS lysS lysS lspA lspA pheT pheT metG metG argS argS alaS alaS valS valS glyS glyS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ileSisoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. (944 aa)    
Predicted Functional Partners:
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...]
  
 0.976
leuS
leucyl-tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family.
 
0.962
lysS
lysyl-tRNA synthetase; Belongs to the class-II aminoacyl-tRNA synthetase family.
 
 0.958
lspA
Lipoprotein signal peptidase; This protein specifically catalyzes the removal of signal peptides from prolipoproteins; Belongs to the peptidase A8 family.
  
 0.943
pheT
phenylalanyl-tRNA synthetase subunit beta; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
  
 
 0.940
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
  
 0.931
argS
arginyl-tRNA synthetase.
  
 0.930
alaS
alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain.
 
 
 0.908
valS
valyl-tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily.
 
 
0.907
glyS
glycyl-tRNA synthetase subunit beta.
 
  
 0.897
Your Current Organism:
Pseudomonas mendocina NK01
NCBI taxonomy Id: 1001585
Other names: P. mendocina NK-01, Pseudomonas mendocina NK-01, Pseudomonas mendocina str. NK-01, Pseudomonas mendocina strain NK-01
Server load: low (14%) [HD]