STRINGSTRING
queC queC queE queE MMP1250 MMP1250 tgtA tgtA crcB crcB tmk tmk cofC cofC gldA gldA trm1 trm1 thiI thiI tiaS tiaS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
queCConserved hypothetical protein; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)). Belongs to the QueC family. (233 aa)    
Predicted Functional Partners:
queE
Conserved hypothetical protein; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7- deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds.
 
 
 0.999
MMP1250
6-pyruvoyl tetrahydropterin synthase.
 
  
 0.998
tgtA
tRNA-guanine(15) transglycosylase; Exchanges the guanine residue with 7-cyano-7-deazaguanine (preQ0) at position 15 in the dihydrouridine loop (D-loop) of archaeal tRNAs; Belongs to the archaeosine tRNA-ribosyltransferase family.
 
   
 0.936
crcB
Camphor resistance CrcB protein; Important for reducing fluoride concentration in the cell, thus reducing its toxicity; Belongs to the CrcB (TC 9.B.71) family.
     
 0.868
tmk
Thymidylate kinase.
     
 0.790
cofC
Conserved hypothetical protein; Guanylyltransferase that catalyzes the activation of phosphoenolpyruvate (PEP) as enolpyruvoyl-2-diphospho-5'-guanosine, via the condensation of PEP with GTP. It is involved in the biosynthesis of coenzyme F420, a hydride carrier cofactor; Belongs to the CofC family.
   
  
 0.780
gldA
Glycerol dehydrogenase; Catalyzes the NAD(P)H-dependent reduction of dihydroxyacetonephosphate (DHAP or glycerone phosphate) to glycerol 1- phosphate (G1P). The G1P thus generated is used as the glycerophosphate backbone of phospholipids in the cellular membranes of Archaea. Belongs to the glycerol-1-phosphate dehydrogenase family.
  
  
 0.771
trm1
N2;N2-dimethylguanosine tRNA methyltransferase; Dimethylates a single guanine residue at position 26 of a number of tRNAs using S-adenosyl-L-methionine as donor of the methyl groups; Belongs to the class I-like SAM-binding methyltransferase superfamily. Trm1 family.
     
 0.756
thiI
Thiamine biosynthesis protein:THUMP domain; Catalyzes the ATP-dependent transfer of a sulfur to tRNA to produce 4-thiouridine in position 8 of tRNAs, which functions as a near-UV photosensor. Also catalyzes the transfer of sulfur to the sulfur carrier protein ThiS, forming ThiS-thiocarboxylate. This is a step in the synthesis of thiazole, in the thiamine biosynthesis pathway. The sulfur is donated as persulfide by IscS.
      
 0.748
tiaS
OB-fold nucleic acid binding domain; ATP-dependent agmatine transferase that catalyzes the formation of 2-agmatinylcytidine (agm2C) at the wobble position (C34) of tRNA(Ile2), converting the codon specificity from AUG to AUA.
  
   
 0.740
Your Current Organism:
Methanococcus maripaludis S2
NCBI taxonomy Id: 267377
Other names: M. maripaludis S2, Methanococcus maripaludis LL, Methanococcus maripaludis str. S2, Methanococcus maripaludis strain S2
Server load: low (12%) [HD]