STRINGSTRING
uvrA uvrA uvrB uvrB uvrC uvrC xseA xseA nfo nfo MMP0731 MMP0731 trxB trxB MMP1282 MMP1282 MMP0538 MMP0538 fen-1 fen-1 pyrG pyrG
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
uvrAExcinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate. (951 aa)    
Predicted Functional Partners:
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
 
 0.999
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 
 0.995
xseA
Exonuclease VII, large subunit:OB-fold nucleic acid binding domain.
  
  
 0.945
nfo
Endonuclease IV; Citation: J. Bio. Chem. (2003) 278: 24563-24576.
  
  
 0.818
MMP0731
Exonuclease VII, small subunit related protein.
  
  
 0.815
trxB
Thioredoxin reductase.
 
  
 0.776
MMP1282
Conseved hypothetical protein NTP-binding; Belongs to the UPF0200 family.
 
  
 0.746
MMP0538
Hypothetical protein.
      
 0.730
fen-1
Flap endonuclease; Structure-specific nuclease with 5'-flap endonuclease and 5'- 3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Binds the unpaired 3'-DNA end and kinks the DNA to facilitate 5' cleavage specificity. Cleaves one nucleotide into the double-stranded DNA from the junction in flap DNA, leaving a nick for ligation. Also involved in the base excision repair (BER) pathway. Act [...]
  
  
 0.723
pyrG
CTP synthase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates.
  
  
 0.651
Your Current Organism:
Methanococcus maripaludis S2
NCBI taxonomy Id: 267377
Other names: M. maripaludis S2, Methanococcus maripaludis LL, Methanococcus maripaludis str. S2, Methanococcus maripaludis strain S2
Server load: low (26%) [HD]