STRINGSTRING
ACS41305.1 ACS41305.1 rpoC rpoC rpoZ rpoZ rpoB rpoB rpoA rpoA rpsO rpsO pnp pnp rpsD rpsD rplS rplS ispDF ispDF infB infB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ACS41305.1Putative transcription elongation factor (GreA/GreB domain protein); Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative factor. (107 aa)    
Predicted Functional Partners:
rpoC
RNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.819
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
   
 
 0.763
rpoB
RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.755
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.750
rpsO
30S ribosomal subunit protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
   
    0.662
pnp
Polynucleotide phosphorylase/polyadenylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction.
  
  
 0.628
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
   
  
 0.524
rplS
50S ribosomal subunit protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site.
 
  
 0.497
ispDF
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF).
     
 0.453
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. IF-2 subfamily.
  
  
 0.414
Your Current Organism:
Methylorubrum extorquens
NCBI taxonomy Id: 272630
Other names: M. extorquens AM1, Methylobacterium extorquens AM1, Methylorubrum extorquens AM1, Pseudomonas sp. AM1
Server load: low (26%) [HD]