STRINGSTRING
ACS41887.1 ACS41887.1 rpoC rpoC rpoZ rpoZ rpoB rpoB rpoA rpoA ACS41888.1 ACS41888.1 rpsO rpsO pnp pnp rpsD rpsD ACS41889.1 ACS41889.1 ispDF ispDF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ACS41887.1Putative GreA/GreB family transcription elongation factor; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme. (154 aa)    
Predicted Functional Partners:
rpoC
RNA polymerase, beta prime subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.819
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.794
rpoB
RNA polymerase, beta subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.755
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.750
ACS41888.1
Putative Zn-dependent oxidoreductase, NAD(P)-binding and GroES-like domains; Function proposed based on presence of conserved amino acid motif, structural feature or limited homology; putative enzyme.
       0.722
rpsO
30S ribosomal subunit protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
   
    0.662
pnp
Polynucleotide phosphorylase/polyadenylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction.
  
  
 0.628
rpsD
30S ribosomal protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit.
   
  
 0.524
ACS41889.1
Conserved hypothetical protein; Homologs of previously reported genes of unknown function.
       0.487
ispDF
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl-D- erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4- diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to 2-C- methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF).
     
 0.453
Your Current Organism:
Methylorubrum extorquens
NCBI taxonomy Id: 272630
Other names: M. extorquens AM1, Methylobacterium extorquens AM1, Methylorubrum extorquens AM1, Pseudomonas sp. AM1
Server load: low (22%) [HD]