STRINGSTRING
lecA lecA lecB lecB lasA lasA lasB lasB rhlR rhlR lasR lasR rhl rhl rhlI rhlI PA5498 PA5498 chiC chiC mvfR mvfR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lecALecA; D-galactose specific lectin. Binds in decreasing order of affinity: melibiose, methyl-alpha-D-galactoside, D-galactose, methyl- beta-D-galactoside, N-acetyl-D-galactosamine. Similar to plant lectins in its selective (carbohydrate-specific) hemagglutinating activity; Belongs to the LecA/PllA lectin family. (122 aa)    
Predicted Functional Partners:
lecB
Fucose-binding lectin PA-IIL; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa).
   
  
 0.950
lasA
LasA protease precursor; Involved in proteolysis and elastolysis (degradation of the host protein elastin). Has staphylolytic activity (degrades pentaglycine cross-links in cell wall peptidogylcan), preferring Gly- Gly-|-X substrates where X is Ala or Gly. Enhances the elastolytic but not proteolytic activity of elastase (lasB) and elastolytic activity of other proteases. Degradation of host elastin is likely to contribute to the pathogenicity of P.aeruginosa. While either His-317 or His-356 can abstract a proton in the hydrolysis reaction, the same residue performs both functions in a [...]
   
  
 0.911
lasB
Elastase LasB; Cleaves host elastin, collagen, IgG, and several complement components as well as endogenous pro-aminopeptidase. Autocatalyses processing of its pro-peptide. Processes the pro-peptide of pro-chitin-binding protein (cbpD). Involved in the pathogenesis of P.aeruginosa infections.
   
  
 0.892
rhlR
Transcriptional regulator RhlR; Necessary for transcriptional activation of the rhlAB genes encoding the rhamnosyltransferase. It also functions as a transcriptional activator of elastase structural gene (lasB). Binds to autoinducer molecules BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone).
   
  
 0.887
lasR
Transcriptional regulator LasR; Transcriptional activator of elastase structural gene (LasB). Binds to the PAI autoinducer; Belongs to the autoinducer-regulated transcriptional regulatory protein family.
   
  
 0.883
rhl
ATP-dependent RNA helicase RhlB; DEAD-box RNA helicase involved in RNA degradation. Has RNA- dependent ATPase activity and unwinds double-stranded RNA. Belongs to the DEAD box helicase family. RhlB subfamily.
      
 0.881
rhlI
Autoinducer synthesis protein RhlI; Required for the synthesis of BHL (N-butanoyl-L-homoserine lactone), and HHL (N-hexanoyl-L-homoserine lactone) autoinducer molecules which bind to RhlR and thus acts in elastase biosynthesis regulation.
   
  
 0.813
PA5498
Probable adhesin; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene).
      
 0.802
chiC
Chitinase; Product name confidence: Class 2 (High similarity to functionally studied protein); Belongs to the glycosyl hydrolase 18 family.
   
  
 0.777
mvfR
Transcriptional regulator MvfR; Transcription regulator that plays a critical role in virulence by positively regulating the expression of multiple quorum sensing (QS)-regulated virulence factors, genes involved in protein secretion, translation, response to oxidative stress and the phnAB operon. At the stationary phase, negatively autoregulates its function through cleavage and translocation to the extracellular space ; Belongs to the LysR transcriptional regulatory family.
   
  
 0.770
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (14%) [HD]