STRINGSTRING
phzS phzS phzM phzM phzB1 phzB1 phzA1 phzA1 phzD2 phzD2 phzG2 phzG2 phzF2 phzF2 phzE2 phzE2 phzC2 phzC2 phzH phzH phzA2 phzA2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
phzSFlavin-containing monooxygenase; Involved in the biosynthesis of pyocyanine, a blue-pigmented phenazine derivative, which plays a role in virulence. Catalyzes the oxidative decarboxylation of 5-methylphenazine-1-carboxylate (5-methyl- PCA) to pyocyanine. Can also act on phenazine-1-carboxylate (PCA), converting it into 1-hydroxyphenazine (1-HP). However, PCA is a poor substrate. (402 aa)    
Predicted Functional Partners:
phzM
Probable phenazine-specific methyltransferase; Involved in the biosynthesis of pyocyanine, a blue-pigmented phenazine derivative, which plays a role in virulence. Converts phenazine-1-carboxylate (PCA) to 5-methylphenazine-1-carboxylate (5- methyl-PCA); Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-independent O-methyltransferase family.
  
 
 0.998
phzB1
Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzB1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth; Belongs to the PhzA/PhzB family.
  
  
 0.981
phzA1
Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzA1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth.
  
  
 0.979
phzD2
Phenazine biosynthesis protein PhzD; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule. PhzD1 (operon phzA1B1C1E1F1G1) has a role in the biosynthesis of the phenazine during planktonic growth. Catalyzes the hydrolysis of the vinyl ether functional group of 2-amino-2-deoxyisochorismate (ADIC), yielding pyruvate and trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA). Also able to act on isochorismate, chorismate and 4-amino-4-deoxychorismate (ADC) as substrates ; Belongs to the isochorismatase family.
  
  
 0.966
phzG2
Probable pyridoxamine 5'-phosphate oxidase; Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP).
  
  
 0.948
phzF2
Probable phenazine biosynthesis protein; Isomerase that catalyzes the condensation of two molecules of trans-2,3-dihydro-3-hydroxyanthranilic acid (DHHA) into the phenazine ring system. The final product is not yet known.
   
  
 0.943
phzE2
Phenazine biosynthesis protein PhzE; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa).
   
  
 0.911
phzC2
Phenazine biosynthesis protein PhzC; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa).
   
  
 0.909
phzH
Potential phenazine-modifying enzyme; Product name confidence: Class 2 (High similarity to functionally studied protein).
   
  
 0.885
phzA2
Probable phenazine biosynthesis protein; Involved in the biosynthesis of the antibiotic phenazine, a nitrogen-containing heterocyclic molecule having important roles in virulence, competition and biological control. PhzA2 (operon phzA2B2C2E2F2G2) has a role in the biosynthesis of the phenazine during both planktonic growth and biofilm development, and in host infection during biofilm development.
      
 0.883
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (18%) [HD]