STRINGSTRING
aroQ aroQ pheC pheC aroC aroC pheA pheA phhC phhC aspC aspC trpG trpG phnA phnA trpE trpE phnB phnB pchA pchA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroQHypothetical protein; Catalyzes the Claisen rearrangement of chorismate to prephenate. The joint presence of this enzyme together with cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment comprises a complete three-step chorismate to phenylalanine pathway and accounts for the so called hidden overflow pathway to phenylalanine in P.aeruginosa, in which two possible routes for it exists, namely either via phenylpyruvate or L-arogenate. (185 aa)    
Predicted Functional Partners:
pheC
Cyclohexadienyl dehydratase precursor; Forms alternative pathway for phenylalanine biosynthesis. Can catalyze two reactions: prephenate dehydratase and arogenate dehydratase. May have a role in chemotaxis or transport.
  
  
 0.979
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
  
 
 0.978
pheA
Chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate.
  
 
 0.951
phhC
Aromatic amino acid aminotransferase; Product name confidence: Class 1 (Function experimentally demonstrated in P. aeruginosa); Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family.
    
 0.942
aspC
Probable amino acid aminotransferase; Product name confidence: Class 3 (Function proposed based on presence of conserved amino acid motif, structural feature or limited sequence similarity to an experimentally studied gene); Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family.
 
  
 0.925
trpG
Anthranilate synthase component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concent [...]
  
 
 0.923
phnA
Anthranilate synthase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...]
  
 
 0.919
trpE
Anthranilate synthetase component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concen [...]
  
 
 0.911
phnB
Anthranilate synthase component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...]
  
 
 0.909
pchA
Salicylate biosynthesis isochorismate synthase; Involved in the conversion of chorismate to salicylate.
    
 0.857
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 208964
Other names: P. aeruginosa PAO1, Pseudomonas aeruginosa PAO1, Pseudomonas sp. PAO1
Server load: low (16%) [HD]