STRINGSTRING
ctaE ctaE ctaC ctaC ctaD ctaD petB petB ctaG ctaG cyoB_1 cyoB_1 cyoB_2 cyoB_2 nuoD nuoD cyoE_2 cyoE_2 nuoM nuoM nuoH nuoH
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ctaECytochrome c oxidase, subunit III; Identified by similarity to SP:P06030; match to protein family HMM PF00510. (295 aa)    
Predicted Functional Partners:
ctaC
Cytochrome c oxidase, subunit II; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B).
 
 0.997
ctaD
Cytochrome c oxidase, subunit I; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
 0.983
petB
Ubiquinol-cytochrome c reductase, cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis.
 
 
 0.971
ctaG
Putative cytochrome c oxidase assembly protein; Identified by similarity to SP:P56940; match to protein family HMM PF04442.
 
  
 0.963
cyoB_1
Cytochrome o ubiquinol oxidase, subunit I; Identified by similarity to SP:P18401; match to protein family HMM PF00115; match to protein family HMM TIGR02843; Belongs to the heme-copper respiratory oxidase family.
 0.951
cyoB_2
Cytochrome o ubiquinol oxidase, subunit I; Identified by similarity to SP:P18401; match to protein family HMM PF00115; match to protein family HMM TIGR02843; Belongs to the heme-copper respiratory oxidase family.
 0.947
nuoD
NADH-quinone oxidoreductase, C/D subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family.
   
 
 0.926
cyoE_2
Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group.
 
  
 0.920
nuoM
NADH-quinone oxidoreductase, M subunit; Identified by similarity to SP:P31978; match to protein family HMM PF00361; match to protein family HMM TIGR01972.
  
 
 0.913
nuoH
NADH-quinone oxidoreductase, H subunit; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone.
  
 
 0.912
Your Current Organism:
Pseudomonas protegens
NCBI taxonomy Id: 220664
Other names: P. protegens Pf-5, Pseudomonas fluorescens Pf-5, Pseudomonas protegens Pf-5, Pseudomonas protegens str. Pf-5, Pseudomonas protegens strain Pf-5, Pseudomonas sp. Pf-5
Server load: low (16%) [HD]