STRINGSTRING
fmt fmt AEF20029.1 AEF20029.1 folD folD def def metG metG AEF24217.1 AEF24217.1 AEF22249.1 AEF22249.1 purN purN gcvT gcvT AEF20998.1 AEF20998.1 glyA glyA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fmtMethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (313 aa)    
Predicted Functional Partners:
AEF20029.1
Sun protein; Specifically methylates the cytosine at position 967 (m5C967) of 16S rRNA.
 
  
 0.978
folD
Bifunctional protein folD; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
  
 
 0.974
def
Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions.
 
 0.969
metG
Methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
  
 
 0.944
AEF24217.1
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
  
 
 0.941
AEF22249.1
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
    
 0.939
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
    
0.938
gcvT
Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine.
   
 
 0.922
AEF20998.1
TIGRFAM: Glycine cleavage system T protein; KEGG: pmy:Pmen_1343 glycine cleavage system T protein; PFAM: Glycine cleavage T-protein, N-terminal; Glycine cleavage T-protein, C-terminal barrel.
   
 
 0.922
glyA
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
     
 0.917
Your Current Organism:
Pseudomonas fulva
NCBI taxonomy Id: 743720
Other names: P. fulva 12-X, Pseudomonas fulva 12-X, Pseudomonas fulva str. 12-X, Pseudomonas fulva strain 12-X
Server load: low (20%) [HD]