STRINGSTRING
AGA84924.1 AGA84924.1 AGA86636.1 AGA86636.1 glyA glyA metE metE gcvT gcvT folD folD thyA thyA metZ metZ metK metK metN metN AGA87622.1 AGA87622.1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AGA84924.1PFAM: Methylenetetrahydrofolate reductase; TIGRFAM: 5,10-methylenetetrahydrofolate reductase, prokaryotic form; Belongs to the methylenetetrahydrofolate reductase family. (309 aa)    
Predicted Functional Partners:
AGA86636.1
Methionine synthase (B12-dependent); Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
 
 
 0.995
glyA
Glycine/serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 
 0.956
metE
Methionine synthase (B12-independent); Catalyzes the transfer of a methyl group from 5- methyltetrahydrofolate to homocysteine resulting in methionine formation; Belongs to the vitamin-B12 independent methionine synthase family.
 
 
 0.943
gcvT
Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine.
  
 
 0.937
folD
5,10-methylene-tetrahydrofolate dehydrogenase/methenyl tetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
    
 0.935
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2'-deoxyuridine-5'- monophosphate (dUMP) to 2'-deoxythymidine-5'-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by- product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis.
    
 0.928
metZ
O-succinylhomoserine sulfhydrylase; Catalyzes the formation of L-homocysteine from O-succinyl-L- homoserine (OSHS) and hydrogen sulfide.
  
 
 0.895
metK
Methionine adenosyltransferase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
  
  
 0.854
metN
ABC-type metal ion transport system, ATPase component; Part of the ABC transporter complex MetNIQ involved in methionine import. Responsible for energy coupling to the transport system.
   
  
 0.791
AGA87622.1
PFAM: Homoserine dehydrogenase; Homoserine dehydrogenase, NAD binding domain; ACT domain.
  
  
 0.783
Your Current Organism:
Pseudomonas stutzeri
NCBI taxonomy Id: 644801
Other names: P. stutzeri RCH2, Pseudomonas stutzeri RCH2, Pseudomonas stutzeri str. RCH2, Pseudomonas stutzeri strain RCH2
Server load: low (14%) [HD]